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Most illegal immigrants come to Ukraine from the Russian Federation and Belarus, so it would be 
reasonable to arrange their first eastern and northern borders. 

Purpose. With this in mind, this study aims to analyze the current situation of economic security 
of Ukraine in the light of the features of its participation in international migration as a transit country 
and country of illegal accumulation. 

Methods. Methods used in the article: theoretical analysis and synthesis of the test material, 
social and qualitative research methods, analytical - statistical method. 

Results. Illegal transit migrants at border crossings using known forms and methods of 
infiltration desired country, through the green zone border; through legal customs checkpoints using 
forged or foreign documents; using large vehicles for industrial use. 

Originality. A number of reasonable and effective ways to counter the threat to economic security 
from Ukraine and transit of illegal migration and the negative effects that caused this process. 

Conclusion. Revealed that the increase of illegal migrants in Ukraine contributing factors such 
as "softness" Ukraine visa policy; lack of control over the activities of businesses and individuals that 
invite and take in Ukraine foreigners; employability and uncontrolled movement of illegal immigrants; 
the lack of an effective mechanism expulsion and deportation of foreigners from Ukraine. 

Keywords: economic security of Ukraine, a transit country, transit migration, illegal migration, 
criminalization of society. 
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SOLUTION OF THE PORTFOLIO OPTIMIZATION MODEL  

AS A BILEVEL PROGRAMMING PROBLEM  
 
In this paper, we consider a mixed-integer bi-level linear programming (or a leader’s) problem 

with one parameter in the right-hand side of the constraints in the lower level (or a follower’s) problem. 
Motivated by the application to a fuzzy portfolio optimization model, we consider a particular case that 
consists in maximizing the investor’s expected return. The functions are linear at the upper level and 
quadratic at the lower level, and the proposed algorithm is based upon an approximation of the optimal 
value function using the branch-and-bound method. Therefore, at every node of this branch-and-bound 
structure, we apply a new branch-and-bound technique to process the integrity condition. 

Keywords: fuzzy portfolio optimization, integer programming, parametric programming, branch-
and-bound approach. 

 
Introduction (Formulation of the problem). The portfolio theory was developed to support 

decision making for allocation of financial assets (securities, bounds) traded at the stock 
exchange [1]. This allocation is known as “investment" decision making. The investor considers the 
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asset as a matter of future income. The better combination of financial assets (securities) of the 
portfolio leads to better return for the investor. The portfolio contains a set of securities, and the 
problem of portfolio optimization targets the optimal resource allocation in investment process of 
trading financial assets [2]. The resource allocation means investing capital in financial assets  
(or goods), which gives return to the investor after certain period of time. For the investment process, 
the aim is to maximize the return while the investment risk has to be minimal [3].  

Harry Markowitz suggested a powerful approach for quantifying the risk in 1952. The 
analytical relations among the portfolio risk pV , portfolio return pE , and the values of the 

investment per type of assets 
ix , according to the portfolio theory [1], are:  
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where 
iE  is the average value of the return for asset i ;   n

n
T REEE ,,= 1 K  is a vector of 

dimension n1 , and 0,   QRQ nn , is a symmetric positive semi-definite assets variance-

covariance matrix. This scheme reflects the elements of fuzziness in the proposed construction. 
The portfolio theory introduces the so called “standard" optimization problem as follows:  
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where 0  is a parameter of the investor’s risk aversion (his/her tolerance to accepting risky 
investments). 

The numerical assessment of   is a task of the financial analyzer, and it has some 
subjective meaning. This coefficient strongly influences the definition and hence the solutions of 
the portfolio problem. As a result, the selected value of   changes the final investment decision 
as well. 

Because of that, the most appropriate for the investor is the following fuzzy bilevel 
programming problem (FBLP):  
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 (6) 
 subject to the following constraint:  

  .(3)(5)(3)s::=)(  problemolvesxRxy n  (7) 
This paper proposes an efficient numerical algorithm to solve the fuzzy bilevel 

programming problem (6)–(7). The method is based upon the lower level objective function 
optimal value techniques ( cf., [4]). 

The paper is organized as follows. Preliminaries, a general formulation of the problem 
and the mathematical model are given in Section 2 and Section 3, respectively. The geometry of 
the problem is described in Section 4, whereas the approximation algorithm is presented in 
Section 5. Section 6 illustrates the algorithm by a numerical example, and conclusions are listed 
in Section 7, with Acknowledgments and References completing the paper. 
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Preliminaries (Analysis of recent research and publications). Hierarchical decision 
making is strongly motivated by real-world applications. For example, in engineering design, the 
main objective of the design engineer may be constrained by the properties inherent in the 
process (such as minimum energy), which, in turn, may be parametric in decision variables, 
chosen by the engineer. These problems can be formulated within a bilevel programming 
problem (BLP) framework, where an upper level (or, outer) optimization problem is constrained 
by another, lower level (or, inner) optimization problem. 

Hierarchical problems also arise in the (non-simultaneous) Stackelberg games [5], in 
which various decision makers try to maximize their utility functions with delay. Because of 
that, they are often not able to realize their decisions independently and at the same time, but are 
forced to act according to certain hierarchy. We will consider the simplest case of such a 
situation, where there are only two acting decision makers. The leader is the one that can handle 
the market independently, whereas the follower has to act in a dependent manner. 

In mathematical terms, it means that the set of variables is partitioned into two vector 

variables, x and y , where mRy  are the leader’s variables and 
nRx   are those governed by 

the follower. Using y  as a parameter, the follower solves a parametric optimization problem, 
and the values )(= yxx  are determined by the follower knowing the selection y  of the leader. 
The leader has to determine the best choice of y  knowing the (optimal) reaction )(= yxx  of the 
follower to the leader’s decision. 

However, important decision making problems may involve decisions both in discrete 
and continuous variables. For example, a chemical engineering design problem may involve 
discrete decisions regarding the existence of chemical process units in addition to decisions in 
continuous variables, such as temperatures or pressures. Problems of this class, dealing with both 
discrete and continuous decision variables, are referred to as mixed-integer BLPs. 

A particular case of the mixed-integer bi-level programming problem is presented by the 
real-world problem of minimizing the cash-out penalty costs of a natural gas shipping company 
[6]. This problem arises when a (gas) shipper draws a contract with a pipeline company to 
deliver a certain amount of gas at several delivering meters. What is actually shipped may be 
higher or lower than the amount that had been originally agreed upon (this phenomenon is called 
an imbalance). When such an imbalance occurs, the pipeline penalizes the shipper by imposing a 
cash-out penalty policy. As this penalty is a function of the operating daily imbalances, an 
important problem for the shippers is how to carry out their daily imbalances so as to minimize 
the incurred penalty. On the other hand, the pipeline (the follower) tries to minimize the absolute 
values of the cash-outs, which produces the optimal response function taken into account by the 
leader in order to find the optimal imbalance operating strategy. Integer variables are involved at 
the lower level problem, and various algorithms to solve the natural gas cash-out problem are 
described in [6]–[10]. 

In general, mixed-integer BLPs can be classified into four classes [11]: 
(I) Integer Upper, Continuous Lower: If the sets of inner (lower level) integer and outer 

(upper level) continuous variables are empty, and on the contrary, the sets of outer integer and 
inner continuous variables is nonempty, then the MIBLP is of Type I. 

(II) Purely Integer: If the sets of inner and outer integer variables are nonempty, and the 
sets of inner and outer continuous variables are empty, then the problem is a purely integer BLP. 

(III) Continuous Upper, Integer Lower: When the sets of inner continuous and outer 
integer variables are empty, and vice versa, the sets of inner integer and outer continuous 
variables are nonempty, then the problem is a MIBLP of Type III. 

(IV) Mixed-Integer Upper and Lower: If the sets of both inner and outer continuous 
and integer variables are nonempty, then the problem is a MIBLP of Type IV. 

Advances in the solution of the mixed-integer bilevel programming problems (MIBLP) of all 
four types can greatly expand the scope of decision making instances that can be modeled and solved 
within a bilevel optimization framework. However, very little attention has been paid in the literature to 
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both the solution and the application of BLP governing discrete variables. This is mainly because these 
problems pose major algorithmic challenges in the development of efficient solution strategies. 

In the literature, methods developed for the solution of the MIBLP have so far addressed a 
very restricted class of problems. More attention has been paid to linear problems. For instance, 
for the solution of the purely integer (Type II) linear BLP, a branch-and-bound type of 
enumerating technique has been proposed by Moore and Bard [12], whereas Nishizaki et al. [13] 
applied a kind of genetic algorithm to the same problem. For the solution of the mixed-integer BLP 
of Type I, another branch-and-bounds approach has been developed by Wen and Yang [14]. 
Cutting plane and parametric solution techniques have been elaborated by Dempe [15] to solve 
MIBLP, in which the lower level has only one upper level (outer) variable involved into the (lower 
level) objective function. Dempe [16] also proposed an algorithm to solve the Linear Bilevel 
Programming Problem (BLPP) using the simplex method with additional variables in the basis set, 
using the theory of subgradients. Bard [17] obtained upper bounds for the objective functions at 
both levels. Thus he generated a non-decreasing sequence of lower bounds for the objective 
function at the upper level, which, under certain conditions, converges to the solution of the 
general BLPP for continuously differentiable functions. Methods based upon decomposition 
technique have been proposed by Saharidis and Ierapetritou [18] and Zhang and Wu [19]. 

Mixed-integer nonlinear bilevel programming problems have received even less attention 
in the literature. The developed methods include an algorithm making use of parametric analysis 
to solve separable monotone nonlinear MIBLP proposed by Jan and Chern [20], a stochastic 
simulated annealing method presented by Sahin and Ciric [21], a global optimization approach 
based on parametric programming technique published by Fasca et al. [22]. Floudas et al. in [11] 
and [23] developed several algorithms dealing with global optimization of mixed-integer bilevel 
programming problems of both deterministic and stochastic nature. The sensitivity analysis for 
MIBLPP also was considered in [24]. 

In [25]–[26], we already started considering and solving mixed-integer linear BLP of 
Type I. Somethimes, a BLP can be reduced to solving a multi-objective optimization problem, 
which is efficiently processed by Liu and Wang in [27]. Bi-level programming problems with 
discrete variables are also examined in Hu et al. [28]. 

The purpose and objectives of the study. The main goal of this paper is to propose an 
efficient algorithm to solve the mixed-integer linear BLP of Type I, because in our bilevel 
portfolio optimization problem (6)–(7), the upper level variable   can clearly treated as integer 
one. Knowing that this problem is hard to solve, we propose an algorithm generating 
approximations that converge to a global solution. The main novelty of the presented heuristic 
approach lies in the combination of branch-and-bound (B&B) technique with with the simplicial 
subdivision algorithms. The numerical experiments demonstrate the robust performance of the 
developed method for instances of the small and medium size. 

General Formulation (Presentation of the main research material). We consider the 
hierarchical optimization problem in two levels: the decision making at the upper level is 
governed by the constraints that are defined in part by a lower level (parametric) optimization 
problem. Let the lower level problem be defined as follows:  

 
 ,0=),(0,),(|),(min yxhyxgyxf

x


 (8) 

 where 
pmnmn RRRgRRRf  :,:  and qmn RRRh :  with 

 Tp yxgyxgyxg ),(,),,(=),( 1 K  and  Tq yxhyxhyxh ),(,),,(=),( 1 K . This problem is called the 

lower level, or the follower’s problem. Let )( y  denote the solution set of problem (8) for a 

fixed parameter 
mRy . 

Now we can formulate the bilevel problem as follows: 
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where RRRF mn : , and Y  is a closed subset of mR . This is the upper level or the leader’s 
problem. Problem (8)–(9) is referred to as a bilevel programming problem. 

In order to guarantee that the bilevel programming problem is well-defined, we assume 
the following: 

  
 1. The set  0}=),(0,),(|),(= yxhyxgyxM   is nonempty.  
 2. Both ),( yxF  and ),( yxf  are bounded from below on M .  
Definition 2.1 A pair ),( yx  is said to be feasible to the linear bi-level programming 

problem if it satisfies Yy   and )( yx  .  
Definition 2.2 A feasible pair ),( yx   is called an optimal solution to the bi-level 

programming problem if ),(),( yxFyxF   for all the feasible solutions ),( yx .  
3 Mathematical Model 
The Mixed Integer Bi-Level Linear Programming Problem with a parameter in the 

objective function of the lower level is formulated as follows:  

 
 ,),(,=|,,min
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m

yx
ZyyxdGyybxa  

 (10) 

which represents the upper level, where 
nRxa , , GRyb m,,   is an mr  matrix, 

rRd  . Note 

that we use the optimistic version of the bilevel programming problem here, see [15]. From now 

on, ,  is the inner product. In general, )( y  is defined as follows:  

 
 ,0,=|,minA=)( xyAxxcrgy

x
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 (11) 
 which describes the set of optimal solution of the lower level problem (the set of rational 

reactions). Here 
nRxc ,  , A  is an nm  matrix with nm . 

For our particular problem, for a fixed current approximate solution 
nk Rx   of the lower 

level problem, the set )(  is defined as follows:  

 
 ,01,=|,minA=)(  xAxxcrg

x
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 (12) 
where  

     ,12:=a,:= kTkTkTTkT xEQxxndEQxc    (13) 
which describes the set of optimal solution of the approximate (linearized) lower level problem 
(the set of rational reactions). Here nRx  , Q  is an nn  matrix, A  is the n1  matrix with 

1=1ia , ni ,1,= K . 
Let us determine the optimal value function of the lower level problem as follows:  

 
 .0,=|,min=)( xyAxxcy

x


 (14) 
 We suppose that the feasible set of problem (11) is non-empty. Again, in the example of 

the portfolio optimization model,   is the parameter that can represent the values of different 
degree of risk aversion on part of the investor. The lower level, depending on our objectives, 
may try to minimize the risk, the uncertainty of possible returns, etc. 

In this paper, we consider a reformulation of (10)–(14) based upon an approach reported 
in the literature ( see [29], or [15]) as a classical nondifferentiable optimization problem. If we 
take into account the lower level optimal value function (14), then problem (10)–(14) can be 
replaced by:  
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 (15) 
 Our work is concentrated on the lower level objective value function (14). For this 

reason, we show some important characteristics ( see [30] or [31]) that will be helpful for solving 
problem (15). 
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4 Problem’s Geometry 
Consider the parametric linear programming problem (14)  

 
 .0,=|,min=)( xyAxxcy

x


 

In order to solve this problem, we use the dual simplex algorithm, like in [31]. Let us fix 
*= yy  

and let 
*x  be an optimal basic solution for 

*= yy  with the corresponding basic matrix B , 

which is a quadratic submatrix of A  having the same rank as A , and such that 
T

NB xxx ),(= ***
, 

with yBxB
1* = 

 and 0=*
Nx . Moreover, let us fix the upper level variable value 

*= yy . Then, 

we can say that 
 ,0)(=))(),((=)( *1****** yByxyxyx NB  is an optimal basic solution of problem 

(14) for a fixed parameter 
*y . And if the following inequality holds:  

 0,1  yB  
 then 

 ,0)(=))(),((=)( 1*** yByxyxyx NB  is also optimal for the parameter vector y . 

It is possible to perturb 
*y  so that B  remains a basic optimal matrix [30]. We denote by 

)( B  a set that we call the stability region of B , which is defined as  

  .0|=)( 1   yByB  
 For all )( By  , the point 

 ,0)(=))(),((=)( 1*** yByxyxyx NB  is an optimal basic solution of 

the problem (14). This region is nonempty because )(* By  . Furthermore, it is closed but not 
necessarily bounded. If )( B  and )(B  are two different stability regions with BB  , then 
only one of the following cases is possible.  

 1. {0}=)()( BB  .  
 2. )()( BB   contains the common border of the regions )( B  and )(B .  
 3. )(=)( BB  .  
Moreover, )( B  is a convex polyhedral set, on which the lower level optimal value 

function is a finite and linear function. To determine an explicit description of the function   
consider the dual problem to problem(14). If )( y  is finite, then  

 }.:,{max=)( cuAuyy    

Let 
suuu ,,, 21 K  denote the vertices of the polyhedral set }:{ cuAu 

. Then,  

 },,,,,,,{max=)( 21  suyuyuyy K  
whenever )( y  is finite. 

By duality, for some basic matrix iB  with )( iBy   we have iBi cuB =
 or  

iBi cBu
1

=


 

and, thus,  
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Setting   ,0)(=)( 1 yByx i

i 
 we derive  

 
 .)(,,,)(,,)(,max=)( 21 yxcyxcyxcy qK

 
It is easy to understand that the stability regions are represented by the segments on the y -axis. 
The function   is nonsmooth, which makes this kind of problems hard to solve. 

Now, we introduce the following definition [29].  
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Definition 4.1 Let ),( ** yx  solve problem (15). Then (15) is called partially calm at 

),( ** yx  if there exist a constant 0>  and a neighborhood U  of RRRyx mn ,0),( **
, such 

that for all Uuyx ),,(  feasible to the problem:  

 
 ,0,,=,=|,,min

,,

m

uyx
ZyxyAxdGyybxa 

 (16) 
 we have  

 
0.||,,,, **  uybxaybxa 

 
 Here || u  represents the absolute value of u.  

Theorem 4.1 Let ),( ** yx  solve problem (10)–(14), then (15) is partially calm at ),( ** yx .  
5 An Approximation Algorithm 

 The basis to start describing the algorithm is given above in this paper. The difficulty in 
the work with the objective value function (14) is due to the simple fact that we do not have it in 
an explicit form. This algorithm tries to approximate function (14) with a finite number of 
iterations. Also (14) is not differentiable: cf. [32], [29] working with subdifferential calculus 
based upon the non-smooth Mangasarian-Fromowitz constraint qualification. 

The tools that we use in this paper are mainly based on the fact that (14) is piecewise-
linear and convex. Also, the basis for developing a good algorithm is given in the next theorems, 
important for keeping on the convexity at every level of approximation.  

Definition 5.1 The intersection of all the convex sets containing a given subset W  of 
mR  is called the convex hull of W  and is denoted by conv W .  

Theorem 5.1 (Carathаdory’s Theorem) Let W  be any set of points in mR , and let 
WC conv= . Then Cy   if and only if y  can be expressed as a convex combination of 1m  

(not necessarily distinct) points in W . In fact, C  is the union of all the generalized d -
dimensional simplices whose vertices belong to W , where Cd dim= .  

Corollary 5.1 Let  }| IiCi   be an arbitrary collection of convex sets in mR , and let C  

be the convex hull of the union of the collection. Then every point of C  can be expressed as a 
convex combination of 1m  or fewer affinely independent points, each belonging to a different 

iC.  
The details and proofs of Theorems 5.1 and Corollary 5.1 can be found in [33].  
Now, we describe the proposed algorithm as follows: 
Step 0. Initialization. Let the problems’ list initially include only the Approximate 

Integer Problem (AIP) build as follows: 
We consider problem (15):  
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Now, let us consider the polytop Y  composed as a convex hull of the leader’s strategies at the 

upper level:  0},=|= ydGyyY , and select 1
·
m  affine independent points 

iy  such that 

}|<)(:|{},,{ 11   yyyyconvY m 
·

K . 

Here )(= Grankmm 
·

, and 111312 ,,, yyyyyy m  ·
L  form a linearly independent 

system. We denote this set of vertices as },,{= 11 ·
K myyV . Also we consider a tolerance value 

0> . Then, we solve the lower level linear programming problem (14) at each vertex, i.e., find 

)(,),( 11 ·
K myy   and the corresponding solution vectors 
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··

K mm yxyx
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Now we build the first approximation of the optimal value function as follows:  
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 (19) 
 In (17) we have an expression with the variable   , that leads to variable y  using (18) and 
(19). Now since the function   is convex,  

 
),()(, yyxc 

 
 our condition )(, yxc   in (15) can be relaxed to the following explicit inequality:  

 ).(, yxc   

 
Thus we obtain a new optimization problem that can be solved, for example, with a 

branch-and-bound method. The Approximate Integer Problem (AIP) is described as follows:  

  .0,,=),(,,=:,,min
,

m

yx
ZyxyAxyxcdGyybxa   (20) 

Now let 1=t , and =tz , where tz  is the incumbent objective value. Put this problem 

into the problems list. By definition, this problem corresponds to the convex polyhedron Y . Go 
to Step 1.  

 Step 1. Termination criterion. Stop if the problems list is empty, or if all the current 
solutions of problem (5) are close enough:  

 
.<),(),(max

11

kkii

mki

yxyx 
 ·  

In these cases, select the point  rr yx , , where 
 
















 11 ,,min=)(
·

K mr yyy 
 as the best 

approximation to the optimal solution of the original problem. 
Otherwise, arbitrarily select and remove a program from the problems list. Go to Step 2.  
 Step 2. Solve the problem taken from the problems list using typical methods for integer 

programming (e.g., like branch-and-bound) to manage the integrality constraint. Denote the set 

of optimal solutions as   K,~,~= 11 yxS  and z~  the objective function value. If the problem has no 

feasible solution, or if its objective function value is larger than tz , then fathom this branch, let 

tt zz =1 , 1= tt  and go to Step 1. Otherwise go to Step 3.  
 Step 3. If the components y  of all the solutions belonging to S  are elements of V , 

then store the solutions, set zzt
~=1 , 1= tt  and go to Step 1 (for such values of y , the point 

),( yx  is feasible for problem(15)). Otherwise, considering the solution  jj yx ~,~
 from S  such 

that the component 
jy~  is different from all the elements of V , we add 

jy~  to V , set tt zz =1 , 
1= tt  and go to Step 4.  
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 Step 4. Subdivision. Make a subdivision of the set Y  corresponding to this problem. By 

construction, problem (20) corresponds to one set of 1
·
m  affine independent points, which 

without loss of generality are assumed to be the points 11 ,, ·
K myy . Adding the point 

jy~  to this 
set, it becomes affinely dependent. Excluding one element of the resulting set, affine 
independence can eventually be obtained (this is guaranteed if some correct element is dropped). 

When one uses this approach, at most 1
·
m  new affine independent sets arise, each 

corresponding to a new linear approximation of the lower level objective function on the convex 

hull of these points. If one such simplex T  is a subset of some region of stability: )( iBT  , 
the feasible points ),( yx  of problem (20) are also feasible for problem (15). Aim of this step is to 
find these simplices by subsequent subdivisions of the set Y . These problems are then added to 
the problems list.  

To calculate the new approximation of the lower level optimal value function we proceed 

as follows: First compute  jy~ . Then construct one set of affinely independent points as 

described above, i.e. delete one of the previous points, say 
ly , where 1},{1, 

·
Kl m , and 

compute  

 
   ,~=)(

1

1,=

ji
i

m

ii

yyy   




·

l
l

 

 defined over  

 
,~=

1

1,=

ji
i

m

ii

yyy  




·

l  (21) 

 with 0i , 1,1,= 
·

K mi , li , and  

 
1.=

1

1,=

 



i

m

ii

·

l  (22) 

Thus we construct at most 1
·
m  new problems:  

 
 ,0,,=),(,,=:,,min)(

,

m

yx
ZyxyAxyxcdGyybxaP  l

l

 
 and add them to the problems list. Go to Step 1.  

Another idea of how to solve problem (15) is to work with the exact penalty function 
described in [25], [6], [32]). Namely, we deduce a new reformulation of (15) using the facts that 
the objective value function (14) is piecewise-linear, convex and partially calm, as we showed it 
in Section 4. 

We suppose that there exists a <0k  such that a point ),( 00 yx  is locally optimal for 
problem (15) if and only if it is locally optimal for the problem:  

   ,0,,=,=|)(,,,min
,

m

yx
ZyxyAxdGyyxckybxa    (23) 

 for all 0kk . 
The difficulty in dealing with (23) arises from the fact that the exact penalty function:  

  )(,,, yxckybxa   (24) 
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is not explicit due to the nature of the lower level optimal value function (14). Moreover, the 
penalty function (24) is also nonconvex. For this reason, we propose to use the algorithms 
presented in [34] and [35]. 

 
6 A numerical example 

 We consider the following bilevel parametric lineal programming problem, where the 
upper level is described as:  

 
},,),(10,=4|262{3min 21211321

2,1,3,2,1
 Zyyyxyyyxxx

yyxxx


 
where  

 
 32112132132121 4,224|85{,,minA=),( xxxyxxxxxxxxrgyy

 
 

 
0},,,, 3212  xxxy

 
and the lower level optimal value is given by:  

 
 321121321

3,2,1
21 4,224|85{min=),( xxxyxxxxxyy

xxx


 
 

 
0}.,,, 3212  xxxy

 
The optimal solution of this problem is ;2,2)(1/3,1/3,0=),;,,( *

2
*
1

*
3

*
2

*
1 yyxxx . We start to solve the 

problem using the proposed algorithm.  

 Step 0. We choose the vertices (5/2,0=1y  and (0,10)=2y  that belong to the convex 

hull of the leader’s strategies at the upper level. Fix the tolerance value 0.1= . Now, we 

calculate 0=)( 1y  and 10=)( 2 y , set =1z , then the first approximation is build as 

follows:  
 .=)( 2yy   

The approximate integer problem (AIP) that we add to the problems’ list is given as follows:  

 },0,,,

85,42

210,4=4

|262{3min

21321

23212321

12121

1321
,









Zyyxxx

yxxxyxxx

yxxyy

yxxx
yx

 
 Step 1. We select (AIP) from the problems list.  
 Step 2. We solve problem (AIP) and obtain the (unique) solution 

  ,2)(0,1/4,0;2=~,~;~,~,~
21321 yyxxx  with 15/4=~z . Because z~  is less than  , we go to Step 3.  

 Step 3. As   (2,2)=~,~=~
21 yyy  is different from the elements of the set V , we add 

(2,2)=~y  to V , set =2z , 2=t  and go to Step 4.  
 Step 4. Make a subdivision at (2,2)=~y  thus obtaining two new problems: the first one 

corresponding to  (2,2)=~(0,10),=2 yyconv , and the second one corresponding to 

 (5/2,0)=(2,2),=~ 1yyconv . Then we add these two new programs to the problems list, each 
one described as follows: the first one with the approximation  

 70/24,/2417=)( 21  yy  
and the second one with the approximation  

 /6.13=)( 22 yy   
Finally, the new problems can be specified as follows: 

 
 21211321

2,1,3,2,1

1 210,4=4|262{3min)( xxyyyxxxP
yyxxx  

 

 
}.,0,,,),(85,4,2 21321132123211  Zyyxxxyxxxyxxxy
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(when removing 
1y  from V ), and 

 
 21211321

2,1,3,2,1

2 210,4=4|262{3min)( xxyyyxxxP
yyxxx  

 
}.,0,,,),(85,4,2 21321232123211  Zyyxxxyxxxyxxxy

 

(when removing 
2y  from V ). Go to Step 1.  

 Step 1. We select )( 1P  from the problems list and go to Step 2.  

 Step 2. We solve )( 1P  yielding the (unique) solution   ;2,2)(1/3,1/3,0=~,~;~,~,~
21321 yyxxx  

with 17/3=~z . And because z~  is less than 2z , then we go to Step 3.  
 Step 3. As   (2,2)=~,~=~

21 yyy  coincides with one of the elements of V , we store the 

solution   ;2,2)(1/3,1/3,0=~,~;~,~,~
21321 yyxxx , set 17/3=3z , 3=t , and go to Step 1.  

 Step 1. We select )( 2P  from the problems list and go to Step 2.  

 Step 2. We solve )( 2P  obtaining the (unique) solution 

  ;2,2)(1/3,1/3,0=~,~;~,~,~
21321 yyxxx  with 17/3=~z . And as z~  is equal to 3z , then we go to Step 3.  

 Step 3. Because   (2,2)=~,~=~
21 yyy  coincides with one of the elements of V , we store 

the solution   ;2,2)(1/3,1/3,0=~,~;~,~,~
21321 yyxxx , set 17/3=4z , 4=t , then go to Step 1.  

 Step 1. The problems list is empty, so we finish the algorithm. 

Therefore, the last stored solution   ;2,2)(1/3,1/3,0=~,~;~,~,~
21321 yyxxx  with 17/3=z  is the 

solution obtained with our algorithm, and it coincides with the exact solution of the problem. 
Conclusions. In this paper, we propose an approximation algorithm to solve the Mixed-

Integer Linear Programming Problem, and at the same time, using the exact penalty function, we 
provide upper and lower bounds for a feasible solution. This algorithm can be applied to solve 
numerically the bilevel portfolio optimization problem (6)–(7). In the latter application, =y  is 
the upper level variable, which uses to have discrete nature. Therefore, after having numerated 

various possible values of  , the vector y  can be interpreted as belonging to 
mZ . 

The work does not stop here, our goal is to analyze more alternatives such as a 
convexification of the exact penalty function, or making use of the subdifferential calculus as 
another alternative. Later, comparing the algorithms, we will choose the best one according to its 
performance and robustness.  
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