

УДК 336.748:330.43

DOI: <https://doi.org/10.31651/2076-5843-2025-2-195-204>

ХОМЕНКО Максим Олегович

здобувач третього (освітньо-наукового) рівня
вищої освіти – доктора філософії кафедри
моделювання економіки і бізнесу
Черкаський національний університет
імені Богдана Хмельницького
м. Черкаси, Україна
khomenko.maksym423@vu.cdu.edu.ua
Orcid ID: [https://orcid.org/ 0009-0008-4239-1448](https://orcid.org/0009-0008-4239-1448)

ДАНИЛЬЧУК Ганна Борисівна

кандидат економічних наук, доцент, доцент
кафедри моделювання економіки і бізнесу,
Черкаський національний університет
імені Богдана Хмельницького
м. Черкаси, Україна
abdanielchuk@vu.cdu.edu.ua
Orcid ID: <https://orcid.org/0000-0002-9909-2165>

АНАЛІЗ ВОЛАТИЛЬНОСТІ ТА АВТОКОРЕЛЯЦІЙНИХ ВЛАСТИВОСТЕЙ КРИПТОВАЛЮТНОЇ ПАРИ BTC-USD В УМОВАХ ГЛОБАЛЬНИХ СОЦІАЛЬНО- ЕКОНОМІЧНИХ ШОКІВ

У статті представлена аналіз нелінійної динаміки та статистичних властивостей криптовалютної пари BTC-USD за період з 1 вересня 2015 року по 1 серпня 2025 року. Актуальність роботи зумовлена унікальною природою криптовалют як нового класу активів та високою турбулентністю глобального соціально-економічного середовища в досліджуваний період. Теоретичною основою роботи є концепції еконофізики та теорії складних систем, зокрема аналіз стилізованих фактів фінансових ринків.

Наведено визначення ключових понять, таких як логарифмічна прибутковість, волатильність та автокореляція. Методологія дослідження включає розрахунок та аналіз автокореляційних функцій для вихідного ряду ціни, ряду прибутковостей та модулів прибутковостей, а також застосування методу рухомого вікна для оцінки динаміки волатильності та автокореляції в часі.

Результати аналізу підтверджують наявність для криптовалютної пари BTC-USD ключових стилізованих фактів, таких як відсутність лінійної автокореляції в прибутковостях та наявність довгострокової пам'яті у волатильності (ефект кластеризації волатильності), що свідчить про прогностичні якості цих показників. Проведено детальний аналіз динаміки ринку в контексті глобальних шоків: пандемії COVID-19, повномасштабного вторгнення Росії в Україну, зміни монетарної політики США та запровадження масштабних економічних санкцій. Встановлено, що зазначені події виступають триггерами значних структурних змін у поведінці ринку, що проявляється у різких сплесках волатильності та зміні кореляційної структури.

Підтверджено неспроможність застосування класичних лінійних моделей, що базуються на гаусовому розподілі, для опису та прогнозування динаміки криптовалют. Підкреслено необхідність використання інструментарію нелінійної динаміки та еконофізики для моделювання поведінки фінансових активів в умовах високої невизначеності.

Ключові слова: нелінійна динаміка, волатильність, автокореляція, криптовалютна пара, геополітичні шоки, COVID-19.

Постановка проблеми. Сучасні фінансові ринки, і зокрема ринок криптовалют, є яскравими прикладами складних адаптивних систем, поведінка яких визначається взаємодією великої кількості агентів в умовах перманентної невизначеності. Криптовалюта Bitcoin (BTC) за останнє десятиліття перетворилася з нішевого активу на повноцінний елемент глобальної фінансової архітектури, що привертає увагу як індивідуальних, так і інституційних інвесторів. Водночас її динаміка характеризується надзвичайно високою волатильністю та нелінійними патернами, що кидає виклик класичним економічним моделям, заснованим на гіпотезі ефективного ринку та нормальному розподілі прибутковостей.

Актуальність даного дослідження зумовлена тим, що період з 2015 по 2025 рік був насичений безпредecedентними глобальними шоками, які суттєво вплинули на світову економіку. Пандемія COVID-19, повномасштабна війна Росії проти України, глобальна енергетична криза,

жорстка монетарна політика центральних банків розвинених країн і масштабні санкції США та Європи проти Російської федерації створили унікальне середовище для аналізу поведінки новітніх фінансових активів.

Сучасна економіка давно вичерпала застосованість класичних лінійних моделей для прогнозування, аналізу та предиктивності шоків та кризових явищ. Такі моделі демонструють обмеженість у представлений результатах та їх обґрунтувань. Поряд з тим, і у нелінійних моделях, ефективність індикаторів та параметрів, розрахованих для стабільних ринкових періодів, суттєво знижується під час кризи, що ускладнюється відсутністю універсальних кризових бенчмарків для адекватної оцінки ситуації. Тому критично важливим завданням є переосмислення існуючих нелінійних методів та моделей за допомогою зміни вхідних параметрів розрахунку при у комплексному аналізі нелінійних властивостей криптовалютної пари BTC-USD протягом тривалого періоду, що включає кілька ринкових циклів та глобальних криз, та у встановленні якісного зв'язку між зміною статистичних характеристик ринку та конкретними соціально-економічними подіями.

Аналіз останніх досліджень і публікацій та виокремлення частини нерозв'язаної раніше проблеми. Дослідження динаміки криптовалют є однією з найактуальніших тем. Закордонні науковці активно вивчають вплив глобальних подій на цей ринок. Праці Ламірі та Бекірос [1], Годелл та Гоутте [2] одними з перших продемонстрували, як пандемія COVID-19 змінила стилізовані факти ринку, посиливши волатильність та кореляційні зв'язки з традиційними активами. Айсан та ін. [3] за допомогою мережевого аналізу показали зростання взаємопов'язаності ринків у цей період. Вплив геополітичних ризиків, зокрема війни в Україні, досліджується у роботах Умара та ін. [4], Фенг та ін. [5], які відзначають, що криптовалюти не стали «тихою гаванню», а реагували на конфлікт сплесками волатильності. Аль-Яхай та ін. [6] аналізують вплив монетарної політики ФРС, доводячи її ключову роль у формуванні довгострокових трендів на ринку BTC.

Вітчизняні науковці також приділяють значну увагу цій проблематиці. У працях Д. Дуброва та С. Козьменко [7] аналізуються перспективи інтеграції криптовалют у національну фінансову систему України в умовах воєнного стану. І. Д'яконова та О. Кравчук [8] досліджують ризики та можливості інвестування в цифрові активи для українських інвесторів.

Методологічну основу для даного дослідження значною мірою формують праці українського науковця В. Соловйова [9-11], який зробив вагомий внесок у розвиток вітчизняної школи еконофізики. Його дослідження системно присвячені застосуванню та адаптації апарату нелінійної динаміки для аналізу фінансових часових рядів. У своїх монографіях та статтях автор розглядає динаміку фондових та криптовалютних ринків через призму синергетичних та еконофізичних методів, включаючи фрактальний та мультифрактальний аналіз, інформаційно-теоретичні міри складності та рекурентний аналіз. Особливу актуальність для даного дослідження мають його роботи, присвячені ідентифікації передвісників криз на ринку криптовалют за допомогою інструментарію нелінійної динаміки, які безпосередньо стосуються питань нестабільності та непередбачуваності.

Кібальник Л. та ін. [12] досліджують вплив російсько-української війни на динаміку валютного ринку, застосовуючи методи фрактального аналізу та рекурентного аналізу для вивчення характеристик часових рядів низки валютних пар. До об'єкта дослідження увійшли як традиційні (EUR/USD, GBP/USD, CNY/USD, USD/RUB, USD/UAH), так і криптовалютні пари (BTC/USD, ETH/USD), що дозволило порівняти їхню поведінку в умовах воєнного конфлікту.

Таким чином, у науковій літературі існує консенсус щодо високої чутливості ринку криптовалют до зовнішніх шоків та підтверджено наявність нелінійних патернів у його динаміці. Проте, нерозв'язаною частиною загальної проблеми залишається комплексний аналіз еволюції ключових нелінійних індикаторів, таких як волатильність та автокореляція, протягом тривалого періоду, що охоплює послідовність різномірних за своєю природою криз (пандемічної, геополітичної, монетарної). Більшість досліджень фокусується на реакції ринку на окрему подію, тоді як кумулятивний ефект та взаємодія цих шоків, що відображаються у динаміці статистичних властивостей ринку, залишаються недостатньо вивченими.

Метою статті є ідентифікація та аналіз нелінійних патернів у динаміці BTC-USD за період 2015-2025 рр. та їх наукова інтерпретація в контексті ключових глобальних соціально-економічних та геополітичних подій.

Викладення основного матеріалу дослідження. Класичний економетричний підхід до моделювання фінансових часових рядів значною мірою спирається на лінійні моделі, такі як ARIMA (авторегресійне інтегроване ковзне середнє), та на фундаментальне припущення про гаусовий (нормальний) розподіл прибутковостей активів. Цей підхід лежить в основі гіпотези ефективного ринку, згідно з якою ціни активів слідують процесу випадкових блукань, а їх прибутковості є незалежними та однаково розподіленими випадковими величинами [13].

Однак, численні емпіричні дослідження, починаючи з піонерських робіт Бенуа Мандельброта, продемонстрували неспроможність цього підходу адекватно описувати реальну динаміку фінансових ринків [14]. Основні недоліки лінійних моделей полягають у наступному:

1. Не-гаусовість розподілу прибутковостей. Емпіричні розподіли прибутковостей фінансових активів, і особливо криптовалют, характеризуються так званими «важкими хвостами» (fat tails) та високим ексцесом (leptokurtosis) [14, 15]. Це означає, що екстремальні події (крахи та злети) відбуваються значно частіше, ніж це передбачає нормальний розподіл.

2. Нестаціонарність волатильності. Лінійні моделі припускають сталість дисперсії (гомоскедастичність) прибутковостей. Натомість, реальні ринки демонструють кластеризацію волатильності — періоди високої мінливості змінюються періодами відносного спокою, що є проявом гетероскедастичності [16, 17].

3. Наявність нелінійних залежностей. Хоча прибутковості фінансових активів зазвичай не мають значущої лінійної автокореляції, вони не є повністю незалежними. Залежності проявляються у вищих моментах розподілу, зокрема, у волатильності, що свідчить про складну нелінійну структуру ринкової динаміки [1].

Ці емпіричні закономірності, відомі як «стилізовані факти», вказують на те, що фінансові ринки є складними адаптивними системами, для аналізу яких більш адекватним є інструментарій еконофізики та нелінійної динаміки [18].

Для дослідження були використані щоденні дані про ціну закриття криптовалютної пари BTC-USD за період з 1 вересня 2015 року по 1 червня 2025 року [19]. Було вирішено розглянути саме цю валютну пару, оскільки вона відображає не просто фінансові потоки, а й глибинні зміни в сучасних соціально-економічних системах. Ця пара поєднує Bitcoin, як символ децентралізованих, некерованих активів, що виникли як реакція на недовіру до традиційних фінансових інститутів, з доларом США, основною світовою резервною валютою та центральним елементом класичної, централізованої системи. Ця комбінація робить її свого роду еталоном для аналізу динаміки цифрових активів. Дослідження цієї пари дозволяє не лише оцінити поведінку ключового криптоактиву, але й зрозуміти, як його вартість взаємодіє з традиційною фінансовою системою, що відображає основні тренди в еволюції світових фінансів.

Розрахунки проводилися в середовищі Python з використанням бібліотек pandas, numpy та matplotlib. Удослідженні використовуються показники: прибутковості, автокореляція, волатильність.

Розрахунок прибутковостей. Для переходу від нестаціонарного ряду цін $P(t)$ до стаціонарного ряду прибутковостей $g(t)$ було використано логарифмічну різницю:

$$g(t) = \ln(P(t)) - \ln(P(t-1)) \quad (1)$$

Цей підхід є стандартним в економетриці, оскільки логарифмічні прибутковості мають зручну властивість адаптивності в часі симетричності відносно зростання та падіння, а також кращому наближення до нормального розподілу, що спрощує їх подальший статистичний аналіз [11].

Прибутковості дозволяють кількісно оцінити, наскільки прибутковою була інвестиція в BTC за певний період. Наприклад, денна логарифмічна прибутковість 0.02 означає приблизно 2% зростання ціни BTC за день. Це дозволяє порівнювати ефективність BTC з іншими

криптовалютами або традиційними активами. Також розподіл прибутковостей є ключовим для оцінки ризику. Аналізуючи гістограми та моменти розподілу (середнє, дисперсія, асиметрія, ексцес) прибутковостей BTC-USD, можна зрозуміти характер цінових рухів, виявити «товсті хвости» (fat tails), що вказують на частіші екстремальні коливання, ніж передбачається нормальним розподілом. Це важливо для моделей Value at Risk (VaR) та Conditional Value at Risk (CVaR).

Автокореляційний аналіз. Для виявлення в структури залежностей у часовому ряді було побудовано автокореляційні функції (АКФ) для трьох рядів:

– вихідного ряду логарифмічних цін $\ln(P(t))$. Очікуємо, що висока позитивна автокореляція на тривалих лагах у логарифмічних цінах BTC-USD буде вказувати на наявність сильного тренду (persistence). Це характерно для нестационарних рядів і свідчить про довгострокові залежності.

– ряду логарифмічних прибутковостей $g(t)$. Для ліквідних активів, таких як BTC, очікується, що прибутковості демонструватимуть слабку або відсутню лінійну автокореляцію. Однак, на ранніх етапах розвитку криптовалютного ринку або під час певних ринкових режимів (наприклад, під час спекулятивних бульбашок), можуть виникати короткострокові автокореляції, що вказують на «імпульс» (momentum) або «реверсію до середнього» (mean reversion). Наприклад, позитивна автокореляція на коротких лагах може свідчити про наявність «momentum trading», де трейдери слідують за поточним трендом.

– ряду модулів прибутковостей $|g(t)|$, як проксі змінної для волатильності.

Кореляція між x_t та $x_t + 1$ визначається за формулою:

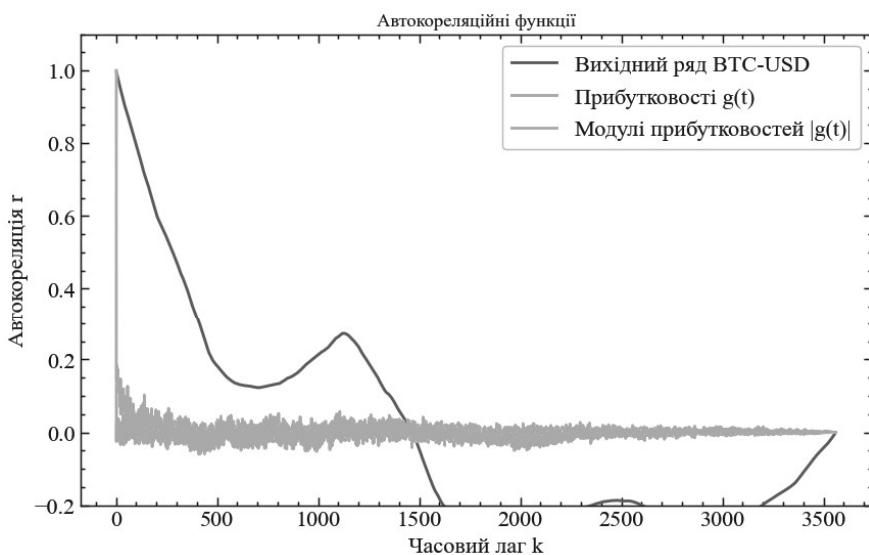
$$r_1 = \frac{[\sum_{t=1}^{N-1} (x_t - \bar{x})(x_{t+1} - \bar{x})]}{[\sum_{t=1}^N (x_t - \bar{x})^2]}, \quad (2)$$

де \bar{x} – це середнє для досліджуваного періоду [11].

Динамічний аналіз показників проводився з використанням рухомого (ковзного) вікна. Для відстеження еволюції ринкових режимів було використано вікно розміром 356 днів.

Волатильність – це узагальнена міра величин ринкових флюктуацій. Іншими словами вона є кількісною мірою мінливості цінового процесу фінансового інструменту або ринкового індексу протягом визначеного часового інтервалу. З математичної точки зору, волатильність – це статистична характеристика, що відображає дисперсію або середнє квадратичне відхилення логарифмічних прибутковостей активу, які є основою для моделювання ризику та невизначеності у фінансових процесах.

Вища волатильність свідчить про збільшенну варіабельності прибутковостей, що може бути результатом змін у ринкових умовах, макроекономічних шоках, новинах або специфічних подіях, які викликають різкі цінові коливання. У фінансовому аналізі волатильність відіграє ключову роль у формуванні моделей ціноутворення опціонів (наприклад, модель Блека-Шоулза), управлінні ризиками (VaR, CVaR) та визначені необхідної премії за ризик.


У даному дослідженні будемо визначати волатильність як середнє від $G(t)$ для часових вікон $T = n \cdot \Delta t$, тобто

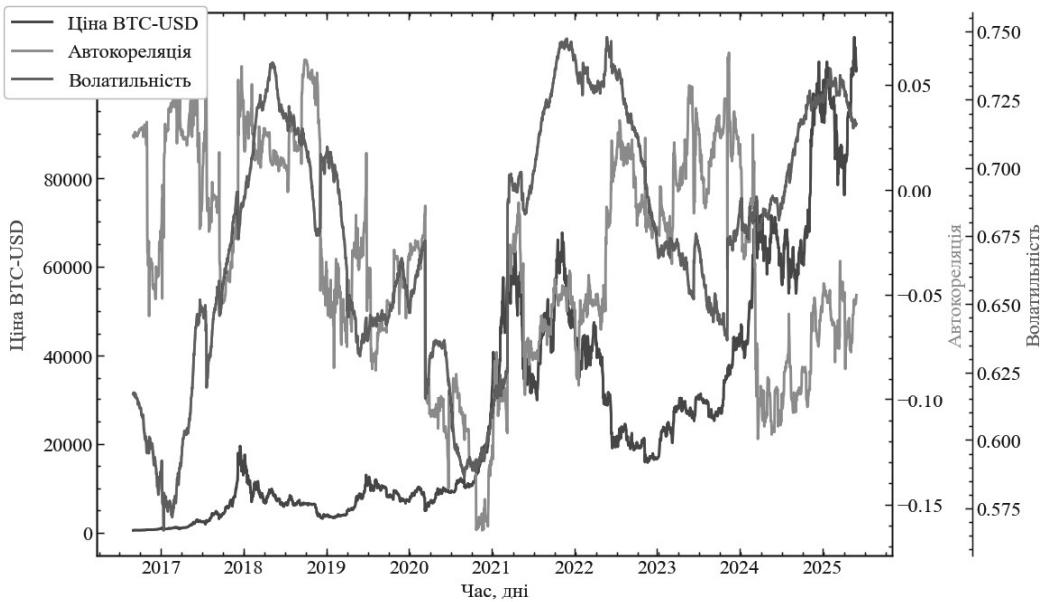
$$V_T = \frac{1}{n} \sum_{t'=t}^{t+n-1} |G(t')|, \quad (3)$$

де n є цілим числом. Таке визначення може бути ще узагальнене заміною $G(t)$ на $|G(t)|\gamma$, де $\gamma > 1$ дає більш виражені великі значення $G(t)$, в той час як $0 < \gamma < 1$ виділяє малі значення $G(t)$. [20].

У цьому визначенні волатильності використовується два параметри: Δt та n . Параметр n є шаблонним (чи модельним) часовим інтервалом для даних, а параметр Δt є кроком переміщення часового вікна. Зауважимо, що вказане визначення волатильності має внутрішню помилку, а саме: вибір більшого часового інтервалу T веде до збільшення точності визначення волатильності. Однак, велике значення T також включає погане розбиття часу на інтервали, що веде, у свою чергу, до врахування не всієї прихованої у ряді інформації.

Результати розрахунків наведено на рис. 1-2.

Рис. 1. Автокореляційні функції для ряду BTC-USD та його похідних


Джерело: розраховано авторами за даними [19]

Аналіз рис.1 свідчить, що автокореляція вихідного ряду демонструє дуже високе позитивне значення на малих лагах (близько 1 на лазі 0, що є тривіальним), яке поступово, але повільно спадає. Навіть на лазі близько 1000 днів (майже 3 роки) коефіцієнт автокореляції все ще залишається значним (близько 0.2). Спостерігається певна «хвилеподібність» або коливання, з піком близько 1200 днів, після чого коефіцієнт продовжує спадати, і навіть занурюється у від'ємну область на дуже великих лагах. Така поведінка є типовою для нестационарних часових рядів. Висока і повільно спадаюча автокореляція логарифмічних цін свідчить про наявність сильного тренду та/або довготривалої пам'яті (long memory) у ряді. Це вказує на те, що ціна BTC-USD значно залежить від своїх минулих значень протягом тривалих періодів часу. Наявність тренду є ключовою ознакою нестационарності, що вимагає перетворення ряду (наприклад, шляхом взяття різниці) для застосування багатьох статистичних моделей. Фінансові ціни, як правило, не є стаціонарними. Вони схильні до довгострокових трендів зростання або падіння, що відображають фундаментальні фактори, такі як зміни в регуляторному ландшафті, макроекономічні умови, епідемії, військові конфлікти, а також спекулятивні цикли.

Також аналіз рис. 1 дозволяє зробити висновок, що минулі прибутковості не можуть бути використані для прогнозування майбутніх прибутковостей за допомогою лінійних моделей, оскільки спостерігається відсутність значущої лінійної автокореляції у прибутковостях. Це означає, що ринок швидко інтегрує нову інформацію, і можливості для отримання надприбутків за допомогою простих стратегій, що базуються на лінійних залежностях, обмежені. Прибутковості BTC-USD поводяться як випадкове блукання або близькі до нього, що є характерною ознакою ефективних фінансових ринків. Тобто, логарифмічна різниця ефективно стаціонаризувала ціновий ряд.

Кластеризація волатильності означає, що періоди високої ринкової невизначеності та великих цінових коливань (високої волатильності) мають тенденцію групуватися разом, так само як і періоди низької волатильності. Позитивна та повільно спадаюча автокореляція модулів прибутковостей вказує на те, що якщо сьогодні ринок BTC-USD є дуже волатильним, існує висока ймовірність того, що він залишиться волатильним і завтра, і протягом наступних кількох днів або навіть тижнів/місяців.

Динамічний аналіз показників волатильності, автокореляції та ціни дозволяє глибше зрозуміти, як криптовалюта реагувала на зовнішні шоки.

Рис. 2. Динаміка ціни, волатильності та автокореляції BTC-USD

Джерело: розраховано авторами за даними [19]

Аналіз рис. 2 свідчить, що:

- 2017-2018 рр. (криптовалютний бум та крах). Цей період позначений експоненційним зростанням ціни BTC-USD, яке супроводжувалося значним підвищенням волатильності. Різке зростання волатильності свідчить про надмірний спекулятивний інтерес та формування цінової «бульбашки». Наступний крах, який розпочався наприкінці 2017 року, супроводжувався піковими значеннями волатильності, що є типовою реакцією на паніку серед інвесторів;

- березень 2020 р. (пандемія COVID-19). Глобальний локдаун та шок ліквідності спровокували обвал традиційних фінансових ринків, що миттєво позначилося і на ринку криптовалют. На рис.2 це відображене як стрімкий обвал ціни та зростання показника волатильності. Ця подія чітко продемонструвала, що криптовалюти не є стабільними і сильно корелюють з традиційними ринками в періоди системного стресу. Така поведінка волатильності, що співставна з 2017–2018 рр., дає передумови стверджувати про патерни, а відтак демонструє предиктивні властивості;

- 2022 р. (війна в Україні та зміна політики ФРС). Повномасштабне вторгнення Росії в Україну створило безпрецедентну геополітичну невизначеність. Однак для фінансових ринків більш значущим фактором стала зміна парадигми монетарної політики ФРС США. Боротьба з інфляцією через підвищення процентних ставок призвела до глобального змінення долара та відтоку капіталу з ризикових активів, що відображене тривалим ведмежим трендом та стабільно високою волатильністю;

- 2023-2025 рр. (період адаптації та нові драйвери). У цей період ринок продемонстрував ознаки адаптації до нової макроекономічної реальності. Схвалення спотових Bitcoin-ETF в США на початку 2024 року стало значним катализатором зростання ціни. Це зростання, на відміну від «буму» 2017 року, супроводжувалося поступовим зниженням волатильності порівняно з кризовими піками. Це може свідчити про певну «зрілість» ринку та приплив інституційних інвесторів, які приносять більшу стабільність.

За результатами аналізу показників на рис.1 та рис 2. можна зробити висновок, що падіння автокореляції на першому графіку відображає ослаблення залежності з ростом часового лагу, а не падіння самого ряду цін. Це є очікуваним результатом для будь-якого фінансового часового ряду, оскільки вплив минулого, хоч і довготривалий для нестационарних рядів, все ж поступово згасає.

Висновки та перспективи подальших розробок. Проведене дослідження підтвердило, що динаміка ринку BTC-USD характеризується вираженими нелінійними властивостями, зокрема, кластеризацією волатильності та довгостроковою пам'яттю. Це означає, що класичні лінійні моделі, засновані на гаусовому розподілі, не надають адекватного опису та прогнозування його поведінки. Встановлено, що глобальні соціально-економічні та геополітичні шоки виступають потужними тригерами значних структурних змін на ринку, що проявляється у різких сплесках волатильності та зміні кореляційної структури. Це підкреслює глибоку інтеграцію криптовалютного ринку у глобальну фінансову систему та його високу чутливість до макроекономічної невизначеності.

Наукова новизна проведеної роботи полягає у комплексному аналізі еволюції ключових нелінійних індикаторів, таких як волатильність та автокореляція, для криптовалютної пари BTC-USD протягом тривалого періоду (з 1 вересня 2015 року по 1 червня 2025 року). На відміну від більшості досліджень, що фокусуються на реакції ринку на окремі події, дана робота вивчила кумулятивний ефект та взаємодію різнорідних за своєю природою глобальних криз (пандемічної, геополітичної, монетарної), що відображаються у динаміці статистичних властивостей ринку.

Напрями подолання обмежень, пов'язаних з використанням традиційних підходів, вимагають переходу від класичних економетричних методів до інструментарію нелінійної динаміки та еконофізики. Це дозволить адекватно моделювати та прогнозувати динаміку криптовалютних активів, особливо в кризові періоди, коли системи виявляють властивості складних адаптивних систем. Важливо переосмислити існуючі нелінійні методи та моделі, змінюючи вхідні параметри розрахунку для комплексного аналізу нелінійних властивостей та встановлюючи якісний зв'язок між зміною статистичних характеристик ринку та конкретними соціально-економічними подіями.

Перехід від традиційного ретроспективного аналізу до проактивної системи прогнозування, заснованої на розумінні нелінійної природи фінансових ринків, є надзвичайно важливим для ефективного управління ризиками в умовах постійної невизначеності та глобальних шоків. Це трансформує фінансовий аналіз з інструменту констатації проблем у механізм раннього попередження та адаптації, що необхідно для стійкості та розвитку в постійно мінливому глобальному економічному середовищі.

Перелік використаних джерел

1. Lahmiri S., Bekiros S. The impact of COVID-19 on the stylized facts of major cryptocurrencies: A statistical and econometric analysis. *Finance Research Letters*. 2020. Vol. 36. P. 101693.
2. Goodell J. W., Goutte S. Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis. *Finance Research Letters*. 2021. Vol. 38. P. 101625.
3. Aysan A. F., Khan A., Topuz H. The impact of the COVID-19 pandemic on the interconnectedness of cryptocurrency and financial markets. *Research in International Business and Finance*. 2021. Vol. 58. P. 101489.
4. Umar Z., Bossman A., Choi S. The Russia-Ukraine war and the behavior of cryptocurrency markets: A new evidence. *Finance Research Letters*. 2023. Vol. 54. P. 103736.
5. Fang Y., Bouri E., Saeed T. Geopolitical risk and the cryptocurrency market: The case of the Russia-Ukraine conflict. *Energy Economics*. 2023. Vol. 119. P. 106553.
6. Al-Yahyaee K. H., Kutan A. M., Rehman M. U. The role of Federal Reserve's policy in the cryptocurrency market. *Journal of International Financial Markets, Institutions and Money*. 2023. Vol. 83. P. 101736.
7. Дубров Д. В., Козьменко С. В. Перспективи та ризики інтеграції криптовалют у фінансову систему України в умовах воєнного стану. *Фінанси України*. 2022. № 8. С. 24–41.
8. Д'яконова І. В., Кравчук О. С. Аналіз ризиків інвестування в цифрові активи на ринку України. *Економіка та держава*. 2023. № 2. С. 55–61.
9. A. Bielinskyi, V. Soloviev, V. Solovieva, A. Matviychuk, S. Semerikov, The analysis of multifractal cross-correlation connectedness between bitcoin and the stock market, in: E. Faure, O.

Danchenko, M. Bondarenko, Y. Tryus, C. Bazilo, G. Zaspa (Eds.), *Information Technology for Education, Science, and Technics*, Springer Nature Switzerland, Cham, 2023, pp. 323–345. Campbell J. Y., Lo A. W., MacKinlay A. C. *The econometrics of financial markets*. Princeton university press, 2021.

10. Soloviev V. N., Belinskyi A. Methods of Nonlinear Dynamics and the Construction of Cryptocurrency Crisis Phenomena Precursors. Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14-17, 2018 / V. Ermolayev et al. (eds). CEUR-WS.org, 2018. Vol. 2104. P. 116–127.

11. Соловйов В. М., Сердюк О. А., Данильчук Г. Б. Моделювання складних систем : навчально-методичний посібник для самостійного вивчення дисципліни. Черкаси : Видавець О. Ю. Вовчок, 2016. 204 с.

12. Кібальник, Л., Кібальник, В., Данильчук, Г., Середа, Д. (2024). Моделювання впливу російсько-української війни на валютний ринок. Вісник Черкаського національного університету імені Богдана Хмельницького. Економічні науки, 28(3-4), 17–27.

13. Taylor S. J. *Modelling financial time series*. John Wiley & Sons, 2008.

14. Mandelbrot B. The variation of certain speculative prices. *The Journal of Business*. 1963. Vol. 36, No. 4. P. 394–419.

15. Conlon T., Corbet S., McGee R. J. Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic. *Research in International Business and Finance*. 2020. Vol. 54. P. 101248.

16. Baur D. G., Dimpfl T. The volatility of Bitcoin and its role as a medium of exchange and a store of value. *Empirical Economics*. 2021. Vol. 61, No. 5. P. 2663–2683.

17. Phillip A., Chan J. S.-K., Peiris S. A new look at stylized facts of cryptocurrencies. *Economics Letters*. 2018. Vol. 170. P. 25–28.

18. Farmer J. D. The economy as a complex adaptive system. *Daedalus*. 2002. Vol. 131, No. 4. P. 98–108.

19. Verizon Media: Yahoo Finance - Stock Market Live, Quotes, Business & Finance News. <https://finance.yahoo.com/> (Дата звернення: 01.06.2025).

20. Дербенцев В. Д., Сердюк О. А., Соловйов В. М., Шарапов О. Д. Синергетичні та еконофізичні методи дослідження динамічних та структурних характеристик економічних систем : монографія. Черкаси : Брама-Україна, 2010. 300 с.

References

1. Lahmiri, S., & Bekiros, S. (2020). The impact of COVID-19 on the stylized facts of major cryptocurrencies: A statistical and econometric analysis. *Finance Research Letters*, 36, 101693. (in Eng)
2. Goodell, J. W., & Goutte, S. (2021). Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis. *Finance Research Letters*, 38, 101625. (in Eng)
3. Aysan, A. F., Khan, A., & Topuz, H. (2021). The impact of the COVID-19 pandemic on the interconnectedness of cryptocurrency and financial markets. *Research in International Business and Finance*, 58, 101489. (in Eng)
4. Umar, Z., Bossman, A., & Choi, S. (2023). The Russia–Ukraine war and the behavior of cryptocurrency markets: New evidence. *Finance Research Letters*, 54, 103736. (in Eng)
5. Fang, Y., Bouri, E., & Saeed, T. (2023). Geopolitical risk and the cryptocurrency market: The case of the Russia–Ukraine conflict. *Energy Economics*, 119, 106553. (in Eng)
6. Al-Yahyae, K. H., Kutan, A. M., & Rehman, M. U. (2023). The role of the Federal Reserve's policy in the cryptocurrency market. *Journal of International Financial Markets, Institutions and Money*, 83, 101736. (in Eng)
7. Dubrov, D. V., & Kozmenko, S. V. (2022). Perspektyvy ta ryzyky intehratsii kryptovaliut u finansovu systemu Ukrayny v umovakh voiennoho stanu [Prospects and risks of cryptocurrency integration into the financial system of Ukraine under martial law]. *Finansy Ukrayny*, (8), 24–41. (in Ukr)
8. Diakonova, I. V., & Kravchuk, O. S. (2023). Analiz ryzykiv investuvannia v tsyfrovi aktyvy na rynku Ukrayny [Risk analysis of investing in digital assets in the Ukrainian market]. *Ekonomika ta derzhava*, (2), 55–61. (in Ukr)

9. Bielinskyi, A., Soloviev, V., Solovieva, V., Matviychuk, A., & Semerikov, S. (2023). The analysis of multifractal cross-correlation connectedness between Bitcoin and the stock market. In E. Faure, O. Danchenko, M. Bondarenko, Y. Tryus, C. Bazilo, & G. Zaspa (Eds.), *Information technology for education, science, and technics* (pp. 323–345). Springer Nature Switzerland. (in Eng)

10. Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (2021). *The econometrics of financial markets*. Princeton University Press. (in Eng)

11. Soloviev, V. N., & Belinskyi, A. (2018). Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. In V. Ermolayev et al. (Eds.), *Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications: Integration, Harmonization and Knowledge Transfer* (Vol. 2104, pp. 116–127). CEUR-WS.org. (in Eng)

12. Soloviov, V. M., Serdiuk, O. A., & Danylchuk, H. B. (2016). *Modeliuvannia skladnykh system* [Modeling of complex systems]. Cherkasy: Vydavets O. Yu. Vovchok. (in Ukr)

13. Kibalyk, L., Kibalyk, V., Danylchuk, H., & Sereda, D. (2024). Modeliuvannia vplyvu rosiisko-ukrainskoi viiny na valiutnyi rynok [Modeling the impact of the Russia–Ukraine war on the foreign exchange market]. *Visnyk Cherkaskoho natsionalnoho universytetu imeni Bohdana Khmelnytskoho. Ekonomichni nauky*, 28(3–4), 17–27. (in Ukr)

14. Taylor, S. J. (2008). *Modelling financial time series*. John Wiley & Sons. (in Eng)

15. Mandelbrot, B. (1963). The variation of certain speculative prices. *The Journal of Business*, 36(4), 394–419. (in Eng)

16. Conlon, T., Corbet, S., & McGee, R. J. (2020). Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic. *Research in International Business and Finance*, 54, 101248. (in Eng)

17. Baur, D. G., & Dimpfl, T. (2021). The volatility of Bitcoin and its role as a medium of exchange and a store of value. *Empirical Economics*, 61(5), 2663–2683. (in Eng)

18. Phillip, A., Chan, J. S.-K., & Peiris, S. (2018). A new look at stylized facts of cryptocurrencies. *Economics Letters*, 170, 25–28. (in Eng)

19. Farmer, J. D. (2002). The economy as a complex adaptive system. *Daedalus*, 131(4), 98–108. (in Eng)

20. Yahoo Finance. (2025). *Stock market live, quotes, business & finance news*. Retrieved June 1, 2025, from <https://finance.yahoo.com/> (in Eng)

21. Derbentsev, V. D., Serdiuk, O. A., Soloviov, V. M., & Sharapov, O. D. (2010). *Synergetichni ta ekonofizychni metody doslidzhennia dynamichnykh ta strukturnykh kharakterystyk ekonomichnykh system* [Synergetic and econophysical methods for studying dynamic and structural characteristics of economic systems]. Cherkasy: Brama-Ukraina. (in Ukr)

KHOMENKO Maxym

PhD student in the second year

Bohdan Khmelnytsky National University of Cherkasy, Cherkasy, Ukraine

DANYLCHUK Hanna

Candidate of Economic Sciences, Associate Professor, Associate Professor of the Department of Economic and Business Modeling, Bohdan Khmelnytsky National University of Cherkasy, Cherkasy, Ukraine

ANALYSIS OF VOLATILITY AND AUTOCORRELATION PROPERTIES OF THE BTC-USD CRYPTOCURRENCY PAIR IN THE CONTEXT OF GLOBAL SOCIO-ECONOMIC SHOCKS

Introduction. This article investigates the nonlinear dynamics and statistical properties of the BTC-USD cryptocurrency pair between September 1, 2015, and August 1, 2025. The study is timely due to the unique nature of cryptocurrencies as a new asset class and the highly turbulent global socioeconomic environment during the analyzed period. The theoretical foundation of the work is based on econophysics concepts and the theory of complex systems, specifically the analysis of stylized facts of financial markets. Traditional linear models, which assume a Gaussian distribution, have proven inadequate for describing and forecasting the behavior of cryptocurrencies, especially during periods of high uncertainty.

Purpose. The main goal of this article is to identify and analyze nonlinear patterns in the BTC-USD dynamics from 2015 to 2025 and to interpret these patterns in the context of major global socioeconomic and geopolitical events. The research methodology includes calculating and analyzing autocorrelation functions for

the price series, returns, and absolute returns, as well as using a moving window method to assess the dynamics of volatility and autocorrelation over time.

Results. The scientific novelty of this work lies in its comprehensive analysis of the evolution of key nonlinear indicators—volatility and autocorrelation—for the BTC-USD pair over a long period that includes a sequence of diverse global crises (pandemic, geopolitical, monetary). Unlike most previous research that focused on the market's reaction to single events, this study examined the cumulative effect and interaction of these shocks as they are reflected in the dynamics of the market's statistical properties. The findings underscore the need for a shift from traditional retrospective analysis to a proactive forecasting system based on an understanding of the nonlinear nature of financial markets.

Conclusion. The study confirms that the dynamics of the BTC-USD market are characterized by pronounced nonlinear properties, making classical linear models based on a Gaussian distribution inadequate for description and forecasting. The results highlight the deep integration of the cryptocurrency market into the global financial system and its high sensitivity to macroeconomic uncertainty. The research emphasizes the need to use nonlinear dynamics and econophysics to model the behavior of financial assets under conditions of high uncertainty.

Keywords. Nonlinear dynamics, volatility, autocorrelation, cryptocurrency pair, geopolitical shocks, COVID-19.

Одержано редакцією: 19.03.2025
Прийнято до публікації: 13.04.2025